Knife grid size reduction to pre-process packed beds of high- and low-moisture switchgrass.

نویسندگان

  • C Igathinathane
  • A R Womac
  • S Sokhansanj
  • S Narayan
چکیده

A linear knife grid device was developed for first-stage size reduction of high- and low-moisture switchgrass (Panicum virgatum L.), a tough, fibrous perennial grass being considered as a feedstock for bioenergy. The size reduction is by a shearing action accomplished by forcing a thick packed bed of biomass against a grid of sharp knives. The system is used commercially for slicing forages for drying or feed mixing. No performance data or engineering equations are available in published literature to optimize the machine and the process for biomass size reductions. Tests of a linear knife grid with switchgrass quantified the combined effect of shearing stresses, packed bed consolidation, and frictional resistance to flow through a knife grid. A universal test machine (UTM) measured load-displacement of switchgrass at two moisture contents: 51%, and 9% wet basis; three knife grid spacings: 25.4, 50.8, and 101.6mm; and three packed bed depths: 50.8, 101.6, and 152.4mm. Results showed that peak load, ultimate shear stress, and cutting energy values varied inversely with knife grid spacing and directly with packed bed depth (except ultimate shear stress). Mean ultimate shear stresses of high- and low-moisture switchgrass were 0.68+/-0.24, and 0.41+/-0.21 MPa, mass-based cutting energy values were 4.50+/-4.43, and 3.64+/-3.31 MJ/dry Mg, and cutting energy based on new surface area, calculated from packed-circle theory, were 4.12+/-2.06, and 2.53+/-0.45 kJ/m2, respectively. The differences between high- and low-moisture switchgrass were significant (P<0.05), such that high-moisture switchgrass required increased shear stress and cutting energy. Reduced knife grid spacing and increased packed bed depths required increased cutting energy. Overall, knife grid cutting energy was much less than energy values published for rotary equipment. A minimum knife grid spacing of 25.4mm appears to be a practical lower limit, considering the high ram force that would be needed for commercial operation. However, knife grid spacing from 50 to 100mm and greater may offer an efficient first-stage size reduction, especially well suited for packaged (baled) biomass. Results of this research should aid the engineering design of size reduction equipment for commercial facilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.

The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for mil...

متن کامل

CFD Simulation of Parameters Affecting Hydrodynamics of Packed Beds: Effects of Particle Shape, Bed Size, and Bed Length

Packed bed reactors have many applications in different industries such as chemical, petrochemical, and refinery industries. In this work, the effects of some parameters such as the shape and size of particles, bed size, and bed length on the hydrodynamics of the packed beds containing three spherical, cylindrical, and cubic particles types are investigated using CFD. The effect of the combinat...

متن کامل

Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.

Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), ...

متن کامل

Degradation of metolachlor in bare and vegetated soils and in simulated water-sediment systems.

A study was conducted to determine the half-life (t1/2), degradation rate, and metabolites of metolachlor in a water-sediment system and in soil with and without switchgrass. Metolachlor degradation in a laboratory was determined in sediment from Bojac sandy loam soil incubated at 24 degrees C. The study also was conducted in a greenhouse on tilted beds filled with Bojac soil and planted with s...

متن کامل

Gaseous ammonia pretreatment lowers the required energy input for fine milling-enhanced enzymatic saccharification of switchgrass

BACKGROUND Fine milling of dry lignocellulosic biomass, without prior chemical pretreatment, can produce a high percent theoretical yield of sugars during subsequent enzymatic saccharification. However, the high sugar yields, necessary for a commercial biofuels process, are costly, with the milling energy input, necessary to achieve such yields even exceeding the energy content of the biomass. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 99 7  شماره 

صفحات  -

تاریخ انتشار 2008